澳门新葡京娱乐城--澳门百家乐官网_百家乐游戏_全讯网433234

專 欄

首 頁

專 欄

學術報告(李進開,華南師范大學研究員,2019.05.31)

學術舉辦時間 2019年05月31日 14:00-15:00 學術舉辦地點 理學實驗樓312報告
主講人 李進開 主題 Global entropy-bounded solution to the heat conductive compressible (Navier-Stokes equations ??(2019030)

學術報告

報告題目Global entropy-bounded solution to the heat conductive compressible (Navier-Stokes equations   (2019030)

報告人:李進開(華南師范大學 研究員)

報告時間:20190531日(周五)下午14:00-15:00

報告地點:理學實驗樓312

 

報告摘要The entropy is one of the fundamental physical states for compressible fluids. Due to the singularity of the logarithmic function at zero and the singularity of the entropy equation in the vacuum region, it is difficult to analyze mathematically the entropy of the ideal gases in the presence of vacuum. We will present in this talk that an ideal gas can retain its uniform boundedness of the entropy, up to any finite time, as long as the vacuum presents at the far field only and the density decays to vacuum sufficiently slowly at the far field. Precisely, for the Cauchy problem of the one-dimensional heat conductive compressible Navier-Stokes equations, in the presence of vacuum at the far field only, the local and global existence and uniqueness of strong solutions, and the uniform boundedness (up to any finite time) of the corresponding entropy have been established, provided that the initial density decays no faster than $O(\frac{1}{x^2})$ at the far field. By introducing the Jacobian between the Euler and Lagrangian coordinates to replace the density as one of the unknowns, we establish the global existence of strong solutions, in the presence of vacuum, and, thus, extend successfully the classic results in [1,2] from the non-vacuum case to the vacuum case. The main tools of proving the uniform boundedness of the entropy are some weighted energy estimates carefully designed for the heat conductive compressible Navier-Stokes equations, with the weights being singular at the far field, and the De Giorgi iteration technique applied to a certain class of degenerate parabolic equations in nonstandard ways. The De Giorgi iterations are carried out to different equations to obtain the lower and upper bounds of the entropy.

[1] Kazhikhov, A. V.: Cauchy problem for viscous gas equations, Siberian Math. J., 23 (1982),44-49.

[2] Kazhikhov, A. V.; Shelukhin, V. V.: Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.

 

個人簡介:李進開,男,博士,研究員,博士生導師。2013年博士畢業于香港中文大學數學研究所,導師為辛周平教授。20138月至20167月在以色列魏茨曼科學研究所從事博士后研究工作,合作導師為Edriss S. Titi教授,20168月至20187月在香港中文大學數學系任研究助理教授,20188月起在華南師范大學華南數學應用與交叉研究中心任研究員。主要研究方向為流體動力學偏微分方程組,具體包括大氣海洋動力學方程組、可壓縮Navier-Stokes方程組等,相關成果發表于CPAM, ARMACPDE, JFA等雜志,入選第14批國家重大人才工程項目入選者。

 

上一條:地理學人講壇第215講 下一條:土木工程學院學術講座--叢正霞教授

郵編:510006        郵箱:webmaster@gzhu.edu.cn

通訊地址:廣州市大學城外環西路230號


移動網站

  • 官方微博

  • 官方微信

廣州大學版權所有     COPYRIGHT?1999-2021      粵ICP備 05008855號

会宁县| 棋牌游戏开发公司| 百家乐赢钱密籍| 申博太阳城官方网站| 百家乐官网视频造假| 大发888线上娱乐21点| 梦幻城百家乐官网的玩法技巧和规则 | 百家乐赌场技巧大全| 百家乐真人大头贴| 真钱娱乐平台| 和乐娱乐| 至尊百家乐娱乐场| 澳门百家乐官网会出老千吗| 百家乐套利| 百家乐官网娱乐城体验金| 大发888官网 平台| 百家乐游戏机分析仪| 百家乐官网怎么玩了| 大发888bjl| 网络百家乐游戏机怎么破解| 超级百家乐官网2龙虎斗| 大发888创建账号翻译| 百家乐连输的时候| 百家乐官网EA平台| 百家乐博娱乐平台| 澳门百家乐官网限红规则| 1737棋牌游戏中心| 立即博百家乐现金网| 百家乐官网五湖四海娱乐网 | 威尼斯人娱乐城现金开户| 查找百家乐官网群| 百家乐官网平台注册送彩金| 大发888娱乐城 建账号| 百家乐电话投注怎么玩| 什么风水适合做生意| 百家乐官网赌博详解| 百家乐官网线上真人游戏| 博彩e族天上人间| 网上娱乐城排名| 百家乐赌博代理| 百家乐账号变动原因|